
Risk Analysis and Measurement
with CWRAF

IT Security Automation Conference

October 31st 2011

Richard Struse
DHS

Steve Christey
MITRE

Software Assurance

The level of confidence that software is free from
vulnerabilities and functions as intended

The level of confidence that software is free from
vulnerabilities, either intentionally designed into the software or
accidently inserted at anytime during its life cycle and that the
software functions as intended. Derived From: CNSSI-4009

Some important things to note

Sponsored by DHS

Open, community efforts that
are free to use

XML-based

“Making Security Measureable”:
measurablesecurity.mitre.org

Resources provided for
voluntary adoption

http://measurablesecurity.mitre.org/

What is the context?

What problems are we trying to solve?

Where do we start?

Where can automation help - today?

S

W

S: The set of all software in existence at some point in time

W: The set of all instances of software weaknesses in S

Notional

SI
D

EB
A

R

There are many definitions of “weakness.”
What do we mean by weakness in this context?

A (software) weakness is a property of
software/systems that, under the right
conditions, may permit unintended /
unauthorized behavior.

W

Notional

Wd

Wd: The set of all discovered software weaknesses in W

W

Notional

Wd
V

V: The set of all vulnerabilities in W

SI
D

EB
A

R

There are many definitions of “vulnerability.”
What do we mean by vulnerability in this context?

A (software) vulnerability is a collection of
one or more weaknesses that contain the
right conditions to permit unauthorized
parties to force the software to perform
unintended behavior (a.k.a. “is exploitable”)

W

Notional

Wd
V

Vd: The set of all discovered vulnerabilities in V

Vd

Weakness vs. Vulnerability: Code Example
char *copyUserName (int nameSize, char *name) {

 int bufferSize;

 char *dupeName;

/* CWE-20: Improper input validation */
 bufferSize = (nameSize * sizeof(char));

 /* Potential integer overflow (CWE-190) and incorrect buffer size calculation (CWE-131). */
 dupeName = malloc(bufferSize);

 /* CWE-252: Unchecked Return Value */
 strcpy(dupeName, name);

 /* Potential heap-based buffer overflow (CWE-122), NULL pointer dereference (CWE-476) */
 return(dupeName);
}

copyUserName(6, “Steve”);

copyUserName(atoi(argv[1]), argv[2]);

Packet = ReadNetworkPacket(20);

Size = ParseInteger(Packet);

Name = ParseString(Packet);

copyUserName(Size, Name);

CWE-20 -> CWE-190 -> CWE-122

Chain

W

Notional

Wd
V

What does the future hold?

Vd

S

W

Notional

Wd
V

We know it’s not this, at least not in the near-term

Vd

W

Notional

Wd
V

Vd

Maybe the problem grows unbounded?

W

Notional

Wd
V

Maybe just some things get worse?

Vd

W

Notional

Wd
V

One reasonable near-term goal

Vd

W

Notional

Wd

V

Is this really better?

Vd

Increase in the percentage
of vulnerabilities that are
discovered

Increase in the
percentage of

weaknesses that
are discovered

Decreased
number of
vulnerabilities

Yes

W

Notional

Wd

V

where should we start?

Vd

For the software we’re responsible for

Vcve

Vulnerabilities identified
with a CVE are a good
starting point

Common Weakness Enumeration (CWE)

Dictionary of software weakness types

860+ entries in a tree-structure

• CWE ID
• Name
• Description
• Alternate Names
• Applicable Platforms
• Applicable Languages
• Technical Impacts
• Potential Mitigations
• Observed Instances (CVE’s)
• Related Attack Patterns (CAPEC’s)
• Examples
Plus much, much more

W

Notional

Wd

which weaknesses are most important?

For the software we’re responsible for

Weaknesses
we really care

about

How do we identify
these?

Prioritizing weaknesses to be mitigated

OWASP Top 10

CWE/SANS Top 25

Lists are a good start but they are designed to be
broadly applicable

We would like a way to specify priorities
based on business/mission risk

http://cwe.mitre.org/top25/

Common Weakness Risk Analysis Framework (CWRAF)

Common Weakness Scoring System (CWSS)

How do I identify which of the 800+ CWE’s are most
important for my specific business domain,
technologies and environment?

How do I rank the CWE’s I care about according to
my specific business domain, technologies and
environment?

How do I identify and score weaknesses important to my
organization?

Common Weakness Risk Analysis Framework (CWRAF)

Multiple pieces – we’ll focus on “Vignettes”

Technical Impacts
1. Modify data
2. Read data
3. DoS: unreliable execution
4. DoS: resource consumption
5. Execute unauthorized code or commands
6. Gain privileges / assume identity
7. Bypass protection mechanism
8. Hide activities

1. System
2. Application
3. Network
4. Enterprise

Layers

Technical Impact
Scorecard

W1=0
W2=0
W3=10
W4=4
W5=10
W6=0
W7=0
W8=0

Weightings

CWRAF: Technical Impact Scorecard

MD RD UE RC EA GP BP HA

Application

System

Network

Enterprise

For each layer

and each technical impact

assign a weighting from 0 to 10

8

3

CWRAF: Technical Impact Scorecard

MD RD UE RC EA GP BP HA

Application 9 7 3 2 10 8 7 2

System 8 8 4 2 10 9 5 1

Network 9 5 6 2 10 5 7 1

Enterprise 4 7 6 2 10 6 4 3

These weightings can now be used to
evaluate individual CWE’s based on each

CWE’s Technical Impacts

Note: Values for illustrative
purposes only

Common Weakness Scoring System (CWSS)

MD RD UE RC EA GP BP HA

Application 9 7 3 2 10 8 7 2

System 8 8 4 2 10 9 5 1

Network 9 5 6 2 10 5 7 1

Enterprise 4 7 6 2 10 6 4 3

CWE-78
Technical
Impacts

CWSS
Formula 95

CWSS Score for CWE-78
for this vignette

Notional
Note: Values for illustrative
purposes only

CWRAF/CWSS in a Nutshell

W

Wd

CWSS
Score CWE

97 CWE-79
95 CWE-78
94 CWE-22
94 CWE-434
94 CWE-798
93 CWE-120
93 CWE-250
92 CWE-770
91 CWE-829
91 CWE-190
91 CWE-494
90 CWE-134
90 CWE-772
90 CWE-476
90 CWE-131

…

User-defined
cutoff

CWSS
Scoring
Engine

Most
Important

Weaknesses

“Vignette”

Organizations that have declared plans to work on CWRAF
Vignettes and Technical Scorecards to help evolve CWRAF to
meet their customer's and the community's needs for a
scoring system for software errors.

Vignette
Technical Impact

Scorecard

1

2
<CWE ID=“1” …

<CWE ID=“2” …

<CWE ID=“3” …

…

3
CWSS

Scoring
Engine

CWE-89: 99

CWE-238: 92

CWE-6: 83

…

CWE-45: 56

CWE-721: 44

…

CWE-482: 31

CWE-754: 0

CWE-73: 0

…

Step 1 is only done once – the rest
is automatic

4

How do you score weaknesses using CWSS?
1. Establish weightings for

the vignette

2. CWSS scoring engine
processes each relevant CWE
entry and automatically
scores each CWE based on
vignette definition

3. CWE dictionary presented in
priority order based on
vignette-driven CWSS scores

4. Organization now has their
own customized “Top N list”
of critical weaknesses for this
vignette

Vignette
Technical Impact

Scorecard

4

Source
Code

Analysis
Tool

1

2

Line 23: CWE-109

Line 72: CWE-84

Line 104: CWE-482

Line 212: CWE-9

Line 213: CWE-754

…

3

CWSS
Scoring
Engine

Line 212: CWE-9: 99

Line 72: CWE-84: 79

Line 23: CWE-109: 56

Line 104: CWE-482: 31

Line 213: CWE-754: 0

…

Step 1 is only done once – the rest is automatic

How do you score weaknesses discovered in code using
CWSS?

1. Establish weightings for
the vignette

2. Run code through
analysis tool(s)

3. Tools produce report of
CWE’s found in code

4. CWSS scoring engine
automatically scores
each CWE based on
vignette definition

Organizations that have declared plans to support CWSS in
their future offerings and are working to help evolve CWSS
to meet their customer's and the community's needs for a
scoring system for software errors.

More Technical Details for CWSS and
the Top 25

CWSS Metric Groups

CWSS vs. CVSS

Weakness Vulnerability

A-ha Moment

CVSS CWSS

Mature New

Focuses on impact to system Considers impact to System, Application,
Network, or Enterprise (SANE)

Used after vulnerability is discovered Applied the moment there is suspicion

1-50 per software package Thousands of “findings” per package

Must be manually performed Can be partially automated

Discrete-yet-numeric values Finer-grained “quantitative” support

Environment rarely considered Environment/business considerations built-in

Applied once for Base score Refined iteratively

Difficult to apply with incomplete information Explicitly supports incomplete information

A Hard Problem:
The Circle of Technical Impacts

Modify
Data

Read
Data

Unrel.
Exec

Resource
Consume

Exec Code

Gain Privs

Bypass

Hide
Act

Depending on context,
one consequence
can immediately
lead to another

 This is a classic problem
 for prioritizing issues and
evaluating multi-step attacks

CWE/SANS Top 25

• 3 years running

• Latest version published in June 2011

• Survey results from over 25 organizations

• 41 CWE entries nominated

• CWSS 0.8 used to rank results

– Technical Impact, Prevalence, Likelihood of Exploit

• Coming: pocket guide for mitigating the Top
25 (and other weaknesses, too)

Risky Resource Management

Porous Defenses

Insecure Interaction Between Components

• Mark J. Cox Red Hat Inc.
• Carsten Eiram Secunia (Denmark)
• Pascal Meunier CERIAS, Purdue University
• Razak Ellafi & Bonsignour CAST Software
• David Maxwell NetBSD
• Cassio Goldschmidt & Mahesh Saptarshi Symantec Corporation
• Chris Eng Veracode, Inc.
• Paul Anderson Grammatech Inc.
• Masato Terada Information-Technology Promotion Agency (IPA) (Japan)
• Bernie Wong IBM
• Dennis Seymour Ellumen, Inc.
• Kent Landfield McAfee
• Hart Rossman SAIC
• Jeremy Epstein SRI International
• Matt Bishop UC Davis
• Adam Hahn & Sean Barnum MITRE
• Jeremiah Grossman White Hat Security
• Kenneth van Wyk KRvW Associates
• Bruce Lowenthal Oracle Corporation
• Jacob West Fortify Software, an HP Company
• Frank Kim ThinkSec
• Christian Heinrich (Australia)
• Ketan Vyas Tata Consultancy Services (TCS)
• Joe Baum Motorola Solutions
• Matthew Coles, Aaron Katz & Nazira Omuralieva RSA, the Security Division of EMC
• National Security Agency (NSA) Information Assurance Division
• Department of Homeland Security (DHS) National Cyber Security Division

Direct Contributors to the 2011 CWE/SANS Top 25

Which static analysis tools find the CWE’s I care about?

CWE Coverage Claims Representation

Most
Important

Weaknesses
(CWE’s)

Tool A

Tool B

Tool C

Set of CWE’s tool claims to cover

Software Assurance Resources

SwA Working Groups – Next meeting: Week of Nov
28 @ MITRE in McLean, VA

SwA Forum – Next Forum: Week of March 26, 2012
@ MITRE in McLean, VA

SwA Websites: www.us-cert.gov/swa

All SwA Program events are
free and open to the public

Email: software.assurance@dhs.gov

Making Security Measureable:
measurablesecurity.mitre.org

http://www.us-cert.gov/swa
http://www.us-cert.gov/swa
http://www.us-cert.gov/swa
mailto:software.assurance@dhs.gov
http://measurablesecurity.mitre.org/

thank you.

Questions?

Extra Slides

me:

Automation is one piece

of the SwA puzzle.

Security Content Automation Protocol (SCAP)
Components, including:

Common Vulnerabilities and Exposures (CVE)

Open Vulnerability Assessment Language (OVAL)

Common Weakness Enumeration (CWE)

Common Weakness Risk Analysis Framework
(CWRAF)

Common Weakness Scoring System (CWSS)

Common Attack Pattern Enumeration and
Classification (CAPEC)

CWE Coverage Claims Representation (CCR)

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and
Classification (CAPEC)

CWE Coverage Claims Representation (CCR)

automation can help…

Differing levels of maturity…

Effort Maturity

CVE Very Mature

OVAL Very Mature

CWE Mature

CAPEC Somewhat Mature

CWE CCR Brand-new

CWSS Brand-new

CWRAF Brand-new

We encourage you to get involved in
these communities

Common Vulnerabilities and Exposures (CVE)

Dictionary of publicly-disclosed
vulnerabilities with unique identifiers

assert(CVE != Bug_Database);

• CVE ID
• Status
• Description
• References

47,258 entries (as of last week)

Note: Each CVE entry is the result
of expert analysis to verify,
de-conflict and de-duplicate public
vulnerability disclosures

CVE entries feed into NVD

National Vulnerability Database (NVD)

website: nvd.nist.gov

U.S. government repository of
standards-based vulnerability
management data

CVE Entry

• CVSS Scores
• Affected Platforms
• Root-cause Weaknesses (CWE’s)
• References to Advisories
• References to Mitigations
• References to Tools
• OVAL-based Checks

NVD

Common Attack Pattern Enumeration and Classification
(CAPEC)

Dictionary of attack types (mostly software)

• CAPEC ID
• Name
• Description
• Attack Prerequisites
• Indicators of Attack
• Examples
• Related Weaknesses (CWE’s)
• Mitigations
Plus much, much more

386 patterns, organized
by categories, with views

What types of attacks should I test my system against?

Common Attack Pattern Enumeration and Classification

W

Wd

CWSS
Score CWE

97 CWE-79

95 CWE-78

94 CWE-22

94 CWE-434

94 CWE-798

93 CWE-120

93 CWE-250

92 CWE-770

91 CWE-829

91 CWE-190

91 CWE-494

90 CWE-134

90 CWE-772

90 CWE-476

90 CWE-131

…

CWSS
Scoring
Engine

Most
Important

Weaknesses

CWE Related CAPEC ID’s

CWE-79 CAPEC-232, CAPEC-106, CAPEC-19, …

CWE-78 CAPEC-108, CAPEC-15, CAPEC-43, CAPEC-6, …

… …

Security Content Automation Protocol (SCAP)
Components, including:

Common Vulnerabilities and Exposures (CVE)

Open Vulnerability Assessment Language (OVAL)

Common Weakness Enumeration (CWE)

Common Weakness Risk Analysis Framework
(CWRAF)

Common Weakness Scoring System (CWSS)

Common Attack Pattern Enumeration and
Classification (CAPEC)

CWE Coverage Claims Representation (CCR)

Common Weakness Enumeration (CWE)

Common Attack Pattern Enumeration and
Classification (CAPEC)

CWE Coverage Claims Representation (CCR)

automation can help - today…

